
ViennaGrid 2.1.0
User Manual

Institute for Microelectronics

Gußhausstraße 27-29 / E360

A-1040 Vienna, Austria

Institute for Analysis and Scientific Computing

Wiedner Hauptstraße 8-10 / E101

A-1040 Vienna, Austria/Europe



Copyright c© 2011-2014 Institute for Microelectronics,

Institute for Analysis and Scientific Computing, TU Wien.

Main authors:

Florian Rudolf

Karl Rupp

Josef Weinbub

Contributors:

Peter Lagger

Markus Bina

Institute for Microelectronics

Vienna University of Technology

Gußhausstraße 27-29 / E360

A-1040 Vienna, Austria/Europe

Phone +43-1-58801-36001

FAX +43-1-58801-36099

Web http://www.iue.tuwien.ac.at

Institute for Analysis and Scientific Computing

Vienna University of Technology

Wiedner Hauptstraße 8-10 / E101

A-1040 Vienna, Austria/Europe

Phone +43-1-58801-10101

Web http://www.asc.tuwien.ac.at

i



Contents

Introduction 1

1 Installation 4

1.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Generic Installation of ViennaGrid . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Building the Examples and Tutorials . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Main Entities 8

2.1 Points (Geometrical Objects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Elements (Topological Objects) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Segmentation and Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Mesh and Segment Setup 14

3.1 Adding Vertices to a Mesh or Segment . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Adding Cells to a Mesh or Segment . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Iterators 19

4.1 Elements in a Mesh or Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Boundary Elements Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Coboundary Element Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Neighbor Element Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Data Storage and Retrieval 26

ii



6 Algorithms 29

6.1 Point/Vector-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Element-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Mesh/Segment-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Input/Output 40

7.1 Readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Writers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Library Internals 47

8.1 Recursive Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2 Element Storage in Mesh and Segment . . . . . . . . . . . . . . . . . . . . . . 48

9 Design Decisions 50

9.1 Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.2 Default Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.3 Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Reference Orientations 53

A.1 Simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B Versioning 55

C Change Log 56

D License 59

Bibliography 60

iii



Introduction

The tessellation of surfaces and solids into complexes of small elements such as triangles,

quadrilaterals, tetrahedra or hexahedra is one of the major ingredients for many computa-

tional algorithms. Applications range from rendering, most notably in computer games, to

computational science, in particular for the numerical solution of partial differential equa-

tions on complex meshs for the study of physical phenomena. These various areas lead to a

broad range of different requirements on a mesh library, which certainly cannot be fulfilled

by a single, predetermined data structure. ViennaGrid employs a highly configurable in-

ternal representation of meshes, while providing a uniform interface for the storage and

access of data on mesh elements as well as STL-compatible iteration over such elements.

As an example, consider the basic building block of triangular meshes, a triangle: The three

vertices fully define the shape of the triangle, the edges can be derived from vertices if a

common reference orientation of the triangles is provided. Depending on the underlying

algorithm, edges of the triangle may or may not be of interest:

• Consider a class triangle, holding the three vertices only. A triangular mesh is then

some array or list of triangles and an algorithm algo1 working only on vertices on

a per-cell basis can be executed efficiently. An example for such an algorithm is the

assembly of a linear, nodal finite element method.

• An algo2may need to have global edge information available, i.e. only one instance of

an interfacing edge of two triangles should exist in an explicit manner. Thus, storing

the edges globally in the mesh will allow the use of algo2, but will at the same time

introduce unnecessary edge information for algo1. Finite volume schemes can be

seen as an example for this second type of algorithms.

• A third algorithm algo3 may need global edge information, as well as information

about the local orientation of edges with respect to each triangular cell. In such a

case it may be preferred to additionally store mappings from global orientations to

local orientations of the edges on each triangle if fast execution is desired. Such an

additional storage of orientations will render the data structure well suited for algo3,

but less suited for algo1 and algo2. An example for such a third type of algorithm

are – at least to some extent – high-order finite element methods.

The situation for tetrahedral meshes is even more complicated, because additional orien-

tation issues of shared facets come into play.

The aim of ViennaGrid is to be highly customizable such that all three algorithms outlined

above can be supported with an optimal data layout. In particular, ViennaGrid allows for

a user-specification of the storage of elements, in particular which boundary elements are

stored inside the mesh as well as which topological information is stored on each element.

After a brief introduction into the nomenclature used in this manual in Chapter 2, the

1



global

local

Vertex−Array Cell−Array

(a) Store only vertices globally, do not store edges.

global

local

Edge−ArrayVertex−Array Cell−Array

(b) Store vertices and edges globally.

Figure 1: Two storage schemes for a triangle and the underlying triangular mesh data

structure.

configuration of the data storage layout is explained in Chapter 3, and the basic steps

required to fill a mesh with cells is explained in Chapter 3.

In addition to a high flexibility with respect to the underlying data structures, ViennaGrid

provides STL-compatible iterators and access to sub-elements of a mesh, cf. Chapter 4.

This allows for writing generic code that is a-priori independent of the underlying spatial

dimension, yet enables compiler optimizations such as loop unrolling for tight loops. In

particular, a single implementation for algorithms operating in multiple dimensions and

using different mesh types (triangular, hexahedral, etc.) can be obtained.

One of the strengths of ViennaGrid is the generic facility provided for storing arbitrary

quantities on a mesh, cf. Chapter 5. This is achieved by the use of set of concepts which

provide uniform access to data through so called accessors or fields.

A typical requirement for a meshing library is mesh refinement. This is in particular of

interest for computational science, where singularities near corners need to be resolved

sufficiently well. ViennaGrid provides both uniform and adaptive refinement algorithms,

cf. Chapter 6, where also other geometric algorithms such as Voronoi information is cov-

ered.

Input/Output facilities are discussed in Chapter 7. Some of the library internals are dis-

cussed in Chapter 8 and design decisions are outlined in Chapter 9.

There are of course a number of other free software libraries having functional overlap

with ViennaGrid. We give a brief discussion of the pros and cons of selected libraries in

the following. This should allow potential users of our library to get a better feeling of

what to expect and what not to expect from ViennaGrid. We have carefully checked the

documentation of each project, but clearly cannot guarantee that all information is fully

accurate.

• CGAL [1]: The focus of the Computational Geometry Algorithms Library (CGAL) is on

geometrical algorithms such as the computation of convex hulls of point sets. It offers

a mesh generation facility and provides iterators over cell vertices. However, the

storage of quantities and the convenient traversal of mesh elements is not provided.

• DUNE [2]: DUNE follows a similar approach for the generic representation of meshes.

It provides support for conforming and non-conforming grids, as well as support for

parallel and distributed meshes. However, unlike ViennaGrid, we could not find

any mechanism providing a convenient means to store data on mesh elements (users

are essentially required to handle their data themselves), and for the customization

about the internal storage of mesh elements.

2



• GrAL [3]: The Grid Algorithms library (GrAL) provides mesh data structured and

algorithms operating on them. A number of principles used in ViennaGrid such as

n-cells already show up in GrAL as k-Elements. The library does not provide any

facility to store data on mesh elements. Mesh refinement is also not provided.

• libmesh [4]: The libmesh library is not only a mesh library, but also a framework

for numerical simulations. Since ViennaGrid is designed to be as general as possi-

ble without prematurely restricting to a particular application, we only compare the

parts in libmesh related to mesh handling. libmesh supports one-, two- and three-

dimensional meshes and also allows to generate meshes for simple meshs. Iterations

over elements of a mesh are carried out in a runtime manner, thus causing poten-

tial overhead. One of the strengths of libmesh is the support for mesh refinement

and parallel computations. Support for user-defined data on mesh elements is also

provided.

• OpenMesh [5]: OpenMesh provides a generic data structure for representing and

manipulating polygonal meshes. The main goals are flexibility, efficiency and easy-to-

use. Similar to ViennaGrid, generic programming paradigms are used. OpenMesh

allows to store custom data of arbitrary type on mesh elements, but it seems to rely

on potentially slow string comparisons at run-time to retrieve the data. Moreover,

OpenMesh is specifically designed for surface (i.e. non-volumetric) meshes, and thus

only the concepts of vertices, edges and faces are used.

• trimesh2 [6]: trimesh2 is a C++ library that is particularly designed for triangular

meshes in 3D only. It explicitly targets efficiency, possibly at the expense of some

generality. We could not find further information for a comparison with ViennaGrid

from the documentation provided.

• VCGlib [7]: VCGlib processes triangular and tetrahedral meshes. Similar to OpenMesh,

VCGlib uses the concepts of vertices, edges and faces only, so the processing of vol-

ume meshes is hampered. Again similar to OpenMesh, the provided facility to store

data on mesh elements relies on potentially slow string comparisons.

3



Chapter 1

Installation

This chapter shows how ViennaGrid can be integrated into a project and how the exam-

ples are built. The necessary steps are outlined for several different platforms, but we

could not check every possible combination of hardware, operating system, and compiler.

If you experience any trouble, please write to the mailing list at

viennagrid-support@lists.sourceforge.net

1.1 Dependencies

• A recent C++ compiler (e.g. GCC version 4.1.x or above, Clang 3.0 or above, and Visual

C++ 2005 or above are known to work)

• CMake [8] as build system (optional, but recommended for building the examples)

1.2 Generic Installation of ViennaGrid

Since ViennaGrid is a header-only library, it is sufficient to copy the viennagrid/ source

folder either into your project folder or to your global system include path.

On Unix-like operating systems, the global system include path is usually /usr/include

/ or /usr/local/include/. On Windows, the situation strongly depends on your devel-

opment environment. We advise to consult the documentation of the compiler on how

to set the include path correctly. With Visual Studio 9.0 this is usually something like

C:\Program Files\Microsoft Visual Studio 9.0\VC\include and can be set in

Tools -> Options -> Projects and Solutions -> VC++-Directories.

1.3 Building the Examples and Tutorials

For building the examples, we suppose that CMake is properly set up on your system. The

various examples and their purpose are listed in Tab. 1.1.

4



File Purpose

accessor.cpp Demonstrates the use of accessors, cf. Chapter 5

algorithms.cpp Demonstrates the algorithms provided, cf. Chapter 6

coboundary iteration.cpp Shows how to iterate over co-boundary elements,

cf. Chapter 4

copy elements.cpp Shows how to copy elements from one mesh to an-

other

dump info.cpp Reads a Netgen or VTK mesh from file and prints

some statistics

element erase.cpp Demonstrates how to erase single elements from a

mesh

finite volumes.cpp Generic implementation of the finite volume method

(assembly)

interface.cpp Demonstrates how the interface algorithm works,

cf. Chapter 6

io.cpp Explains input-output operations, cf. Chapter 7

iterators.cpp Shows how the mesh and segments can be traversed,

cf. Chapter 4

mesh setup.cpp Fill a mesh with cells, cf. Chapter 3

multi segment.cpp Explains multi-segment capabilities, cf. Chapter 3

named segments.cpp Exemplary use of named segments, cf. Chapter 3

neighbor iteration.cpp Shows how to iterate over neighbor elements,

cf. Chapter 4

polygon.cpp ViennaGrid also supports polygons, cf. Chapter 3

read plc.cpp Shows ho to use the PLC reader, cf. Chapter 7

segments.cpp Shows how to use segmentations and segments,

cf. Chapter 3

thin mesh.cpp Creates a mesh consisting of only vertices and cells,

cf. Chapter 3

vmesh creator.cpp Example for using the vmesh-writer, cf. Chapter 7

Table 1.1: Overview of the sample applications in the examples/tutorial folder

5



1.3.1 Linux

To build the examples, open a terminal and change to:

$> cd /your-ViennaGrid-path/build/

Execute

$> cmake ..

to obtain a Makefile and type

$> make

to build the examples. If desired, one can build each example separately instead:

$> make algorithms #builds the algorithms tutorial

Speed up the building process by using multiple concurrent jobs, e.g. make -j4.

Some of the tutorials need to access mesh data in examples/data/. To ensure that the

data is accessible, please execute all tutorials directly from the build folder, e.g.

$ build> examples/tutorial/algorithms

1.3.2 Mac OS X

The tools mentioned in Section 1.1 are available on Macintosh platforms too. For the GCC

compiler the Xcode [9] package has to be installed. To install CMake, external portation

tools such as Fink [10], DarwinPorts [11], or MacPorts [12] have to be used.

The build process of ViennaGrid is similar to Linux.

1.3.3 Windows

In the following the procedure is outlined for Visual Studio: Assuming that CMake is

already installed, Visual Studio solution and project files can be created using CMake:

• Open the CMake GUI.

• Set the ViennaGrid base directory as source directory.

• Set the build/ directory as build directory.

• Click on ’Configure’ and select the appropriate generator (e.g. Visual Studio 9

2008)

• Click on ’Generate’ (you may need to click on ’Configure’ one more time before you

can click on ’Generate’)

• The project files can now be found in the ViennaGrid build directory, where they can

be opened and compiled with Visual Studio (provided that the include and library

paths are set correctly, see Sec. 1.2).

6



Note that the examples should be executed from the build/ folder respectively in order to

access the correct input files.

7



Chapter 2

Main Entities

In the following, the main entities of ViennaGrid are explained. The nomenclature essen-

tially follows the convention from topology and can partly be found in other mesh libraries.

Note that the purpose of this manual is not to give exact definitions from the field of ge-

ometry or topology, but rather to establish the link between abstract concepts and their

representation in code within ViennaGrid. First, geometrical objects are discussed, then

topological objects and finally complexes of topological objects.

2.1 Points (Geometrical Objects)

The underlying space in ViennaGrid is the m-dimensional Euclidean space E
m, which

is identified with the real coordinate space R
m in the following. A point refers to an ele-

ment x in R
m and does not carry any topological information. On the other hand, a point

equivalently refers to the vector from the origin pointing to x.

Given a configuration class Config for ViennaGrid (cf. Chap. 3), a point is defined and

manipulated as follows:

using namespace viennagrid;

// obtain the point type from a meta-function

typedef result_of::point<Config>::type PointType;

// For a three-dimensional Cartesian space (double precision),

// the type of the point is returned as

// spatial_point<double, cartesian_cs<3> >

// Instantiate two points:

PointType p1(0, 1, 2);

PointType p2(2, 1, 0);

// Add/Subtract points:

PointType p3 = p1 + p2;

std::cout << p1 - 2.0 * p3 << std::endl;

std::cout << "x-coordinate of p1: " << p1[0] << std::endl;

The operators +, -, *, /, +=, -=, *= and /= can be used in the usual mnemonic man-

ner. operator[] grants access to the individual coordinate entries and allows for a direct

manipulation.

8



Vertex

Mesh

Segment Segment

Interface
Cell

Boundary

Edge/Facet

Point

Figure 2.1: Overview of the main entities in ViennaGrid for a triangular mesh. A point

refers to any location in the geometric space and does not carry topological information.

Aside from the standard Cartesian coordinates, ViennaGrid can also handle polar, spher-

ical and cylindrical coordinate systems. This is typically defined globally within the con-

figuration class Config for the whole mesh, and the meta-function in the previous snippet

creates the correct point type. However, if no global configuration class is available, the

point types can be obtained as

typedef spatial_point<double, cartesian_cs<1> > CartesianPoint1d;

typedef spatial_point<double, cartesian_cs<2> > CartesianPoint2d;

typedef spatial_point<double, polar_cs> PolarPoint2d;

typedef spatial_point<double, cartesian_cs<3> > CartesianPoint3d;

typedef spatial_point<double, spherical_cs> SphericalPoint3d;

typedef spatial_point<double, cylindrical_cs> CylindricalPoint3d;

Conversions between the coordinate systems are carried out implicitly whenever a point is

assigned to a point with a different coordinate system:

CylindricalPoint3d p1(1, 1, 5);

CartesianPoint3d p2 = p1; //implicit conversion

An explicit conversion to the Cartesian coordinate system is provided by the free func-

tion to_cartesian(), which allows for the implementation of generic algorithms based on

Cartesian coordinate systems without tedious dispatches based on the coordinate systems

involved.

For details on the coordinate systems, refer to the reference documentation in

doc/doxygen/.

Since all coordinate systems refer to a common underlying Euclidean space, the operator

overloads remain valid even if operands are given in different coordinate systems. In such

a case, the coordinate system of the resulting point is given by the coordinate system of the

left hand side operand:

9



CylindricalPoint3d p1(1, 1, 5);

CartesianPoint3d p2 = p1; //implicit conversion

// the result of p1 + p2 is in cylindrical coordinates

CylindricalPoint3d p3 = p1 + p2;

// the result of p2 + p1 is in Cartesian coordinates,

// but implicitly converted to cylindrical coordinates:

CylindricalPoint3d p4 = p2 + p1;

For additional algorithms acting on points, e.g. norm() for computing the norm/length of a

vector, please refer to Chapter 6.

ViennaGrid is not restricted to one, two or three geometric dimensions! Cartesian

coordinate systems for arbitrary dimensions are available.

2.2 Elements (Topological Objects)

While the point type defines the underlying geometry, elements define the topological con-

nections among distinguished points. Each of these distinguished points is called a vertex

and describes the corners or intersection of geometric shapes. Vertices are often also re-

ferred to as the nodes of a mesh.

An edge or line is a line segment joining two vertices. Note that this is a topological char-

acterization – the underlying geometric space can have arbitrary dimension.

A cell is an element of maximum topological dimension N within the set of elements con-

sidered. The topological dimension of cells can be smaller than the underlying geometric

space, which is for example the case in triangular surface meshes in three dimensions.

Note that the nomenclature used among scientists is not entirely consistent: Some refer to

topologically three-dimensional objects independent from the topological dimension of the

full mesh as cells, which is not the case here.

The surface of a cell consists of facets, which are objects of topological dimension N − 1.
Some authors prefer the name face, which is by other authors used to refer to objects

of topological dimension two. Again, the definition of a facet refers in ViennaGrid to

topological dimension N − 1.

Boundary elements are elements which represent a boundary of another element. For ex-

ample a triangle is a boundary element of a tetrahedron. But not only the direct boundaries

are boundary elements in ViennaGrid, also a boundary element of a boundary element

of an element is a boundary element of that element: for example, a vertex and a line are

both boundary elements of a tetrahedron.

A brief overview of the corresponding meanings of vertices, edges, facets and cells is given

in Tab. 2.1. Note that edges have higher topological dimension than facets in the one-

dimensional case, while they coincide in two dimensions. Refer also to Fig. 2.1.

ViennaGrid supports three element families: simplices, hypercubes and special elements.

Conceptually, ViennaGrid is able to deal with simplices and hypercube of arbitrary di-

mensions, yet the explicit template instantiation are only defined up to three spatial di-

mensions. Special elements are polygons and piecewise linear complexes (PLCs).

10



1-d 2-d 3-d n-d

Vertex Point Point Point Point

Edge Line Line Line Line

Facet Point Line Triangle, etc. n− 1-Simplex, etc.

Cell Line Triangle, etc. Tetrahedron, etc. n-Simplex

Table 2.1: Examples for the vertices, edges, facets and cells for various topological dimen-

sions.

Dimension Generic Tag Element Tag

Simplex n simplex_tag<n> simplex_tag<n>

Hypercube n hypercube_tag<n> hypercube_tag<n>

Vertex 0 simplex_tag<0> vertex_tag

Line or Edge 1 simplex_tag<1> line_tag, edge_tag

Triangle 2 simplex_tag<2> triangle_tag

Tetrahedron 3 simplex_tag<3> tetrahedron_tag

Quadrilateral 2 hypercube_tag<2> quadrilateral_tag

Hexahedron 3 hypercube_tag<3> hexahedron_tag

Polygon 2 polygon_tag polygon_tag

PLC 2 plc_tag plc_tag

Table 2.2: Element types and their tags

To fully enable compiler optimizations, element types are identified during compilation

time by so-called tags. Tab. 2.2 gives an overview of all supported element types and their

tags. Internally, these tags are used for accessing static information such as the num-

ber of vertices of the respective element. Where possible, these numbers are accessed as

constants at compile time, thus enabling full loop unrolling.

2.3 Mesh

A mesh Ω is the top level object in ViennaGrid and is a container for its topological ele-

ments. There are no topological restrictions on the elements inside a mesh.

A typical use-case for a mesh is to store a cell complex. We characterize a cell complex as

a collection of topological elements, such that the intersection of two elements (maybe of

different type) e0 and e1 is another element ei from the cell complex.

ViennaGrid fully supports conforming complexes and has partial support for non-conforming

complexes. Here, a conforming complex is characterized by the property that the intersec-

tion element ei from above is a boundary element from both of the element e0 and the

element e1. If this is not the case, the complex is denoted non-conforming, cf. Fig. 2.2.

11



(a) Conforming cell com-

plex.

(b) Non-conforming cell

complex.

Figure 2.2: Illustration of conforming and non-conforming cell complexes. The vertex in

the center of (b) intersects an edge in the interior, violating the conformity criterion.

The instantiation of a ViennaGrid mesh object requires a configuration class Config. Ta-

ble 2.3 provides an overview of built-in configurations in namespace viennagrid::config,

which can also serve as a starting point for user-defined configurations. Given such a class,

the mesh type is retrieved and the mesh object constructed as

using namespace viennagrid;

// Type retrieval, method 1: use meta-function (recommended)

typedef result_of::mesh<Config>::type MeshType;

// Type retrieval, method 2: direct (discouraged, may be changed)

typedef mesh<Config> MeshType;

MeshType my_mesh; //create the mesh object

2.4 Segmentation and Segment

A segment Ωi refers to a subset of the elements in a mesh Ω. Unlike a mesh, a segment is

not a container for its elements. Instead, only references (pointers) to the elements in the

mesh are stored. In common C++ language, a segment represents a so-called view on the

mesh.

A segmentation represents a collection of segments. The typical use-case for a segmentation

is the decomposition of the mesh into pieces of a common property. For example, a solid

consisting of different materials can be set up in ViennaGrid such that each regions of the

same material are represented in a common segment.

12



Configuration class Spatial Dim Cell Type

vertex_1d 1 Vertex

vertex_2d 2 Vertex

vertex_3d 3 Vertex

line_1d 1 Line

line_2d 2 Line

line_3d 3 Line

triangular_2d 2 Triangle

triangular_3d 3 Triangle

quadrilateral_2d 2 Quadrilateral

quadrilateral_3d 3 Quadrilateral

polygonal_2d 2 Polygon

polygonal_3d 3 Polygon

plc_2d 2 PLC

plc_3d 3 PLC

tetrahedral_3d 3 Tetrahedron

hexahedral_3d 3 Hexahedron

Table 2.3: Predefined default configurations in viennagrid::config.

13



Chapter 3

Mesh and Segment Setup

This chapter explains how a ViennaGrid mesh can be filled with cells. Since this is a

necessary step in order to do anything useful with ViennaGrid, it is explained in detail in

the following. Existing file readers and writers are explained in Chapter 7.

A tutorial code can be found in examples/tutorial/mesh setup.cpp.

In the following, the simple triangular mesh shown in Fig. 3.1 will be set up. Thus, the

mesh type using the provided configuration class for two-dimensional triangular classes

will be used:

using namespace viennagrid;

typedef config::triangular_2d ConfigType;

typedef result_of::mesh<ConfigType>::type MeshType;

typedef result_of::segmentation<MeshType>::type SegmentationType;

typedef result_of::segment<SegmentationType>::type SegmentType;

// The mesh to be set up in the following

MeshType mesh;

// The segmentation for the example mesh in Figure 4.1

SegmentationType segmentation(mesh);

// Segment 0, the left one

SegmentType segment_0 = segmentation.make_segment();

// Segment 1, the right one

SegmentType segment_1 = segmentation.make_segment();

Bear in mind that an additional typename needs to be put after typedef when using

the meta-functions in namespace result_of if used inside a template class or template

function. The mesh type is selected from the respective configuration class in namespace

config. The created mesh object will be filled with vertices and cells in the following.

14



0

1

2

3

Segment 0 Segment 1

10

5 4 3

2

Figure 3.1: An exemplary mesh for demonstrating the use of ViennaGrid. Cell-indices are

boxed.

3.1 Adding Vertices to a Mesh or Segment

Since vertices carry geometric information by means of an associated point type, we first

obtain the respective point type from the meta-function point<>:

typedef viennagrid::result_of::point<MeshType>::type PointType;

This already allows us to add the vertices shown in Fig. 3.1 one after another to the mesh

by using make_vertex. This function returns a handle to the created vertex. The type of

the vertex handle is obtained from either the general handle-meta-function as

typedef viennagrid::result_of::handle< MeshType,

viennagrid::vertex_tag

>::type VertexHandleType;

or directly by using the convenience meta function vertex_handle:

typedef viennagrid::result_of::vertex_handle<MeshType>::type

VertexHandleType;

One example for adding the first vertex is to push the respective point to the mesh using

the member function make_vertex, which also assigns an ID to the vertex:

PointType p(0,0);

VertexHandleType vh0 = viennagrid::make_vertex(mesh, p); // add vertex #0

To push the next vertex, one can either reuse the existing vertex:

p[0] = 1.0;

p[1] = 0.0;

// add vertex #1

VertexHandleType vh1 = viennagrid::make_vertex(mesh, p);

or directly construct the respective points in-place:

// add vertex #2

VertexHandleType vh2 = viennagrid::make_vertex(mesh, PointType(2,0));

// add vertex #3

VertexHandleType vh3 = viennagrid::make_vertex(mesh, PointType(2,1));

// ...

15



It is also possible to explicitly specify the ID for a new vertex:

typedef viennagrid::result_of::vertex<MeshType>::type VertexType;

typedef viennagrid::result_of::id<VertexType>::Type VertexIDType;

// add some vertex with ID 42

VertexHandleType vh = viennagrid::make_vertex(mesh,

VertexIDType(42),

PointType(0,0));

If the geometric location of a particular vertex needs to be adjusted at some later stage, the

free function point can be used. To e.g. access the vertex with vertex handle vh4,

viennagrid::point(mesh, vh4)

returns a reference to the respective element, which can then be manipulated accordingly.

Vertices can also be created through a segment seg1 directly:

VertexHandleType vh = viennagrid::make_vertex(seg1, PointType(1,1));

In this case the vertex is created in the underlying mesh and a handle is stored in the

segment.

3.2 Adding Cells to a Mesh or Segment

In order to add cells to a mesh or segment, one first needs to extract its type. This is

conveniently possible via the cell meta-function:

typedef viennagrid::result_of::cell<MeshType>::type CellType;

Note that this is only a shortcut for the more general way of obtaining any mesh element

type via the respective tag. For cells, the above is equivalent to

using namespace viennagrid;

typedef result_of::cell_tag<MeshType>::type CellTag;

typedef result_of::element<MeshType, CellTag>::type CellType;

Note that an additional typename is required if these lines are put inside a template class

or template function.

If more than one element type has highest topological dimension within the mesh,

this meta function will fail due to ambiguity.

An overview of the generic procedure for adding a cell to a mesh or segment is the following:

• Set up an array holding the handles to the vertices in the mesh. Do not use handles

to vertices defined outside the mesh.

• Use make_element to create the element within the mesh or segment

Thus, the array of handles to vertices is created for a triangle as follows:

VertexHandleType cell_vertices[3];

16



Instead of hard-coding the number of vertices for a triangle, one can instead use

static const std::size_t dim =

viennagrid::boundary_elements<CellTag,

viennagrid::vertex_tag>::num;

VertexHandleType cell_vertices[dim];

resulting in code which will also work for e.g. quadrilateral meshes.

boundary_elements<CellTag,viennagrid::vertex_tag>::num will only work on

elements with static vertex count, e.g. triangles, tetrahedrons, ... This method will

not work with polygons or PLCs

Next, the vertex addresses for the first triangle are stored:

cell_vertices[0] = vh0; // vertex #0

cell_vertices[1] = vh1; // vertex #1

cell_vertices[2] = vh5; // vertex #5

Make sure that the correct cell orientation is used, cf. Appendix!

If the vertex handles are not available at this point, but the vertex IDs are known (this

frequently occurs in mesh file readers) you can search them with their ID. Keep in mind

that depending on the underlying data structure this search might have linear runtime

complexity.

typedef viennagrid::result_of::vertex<MeshType>::type VertexType;

typedef viennagrid::result_of::id<VertexType>::Type VertexIDType;

// vertex #0

cell_vertices[0] = viennagrid::find_by_id(mesh, VertexIDType(0));

// vertex #1

cell_vertices[1] = viennagrid::find_by_id(mesh, VertexIDType(1));

// vertex #5

cell_vertices[2] = viennagrid::find_by_id(mesh, VertexIDType(5));

If you can ensure that the vertex with ID 0 was created first, the vertex with ID 1 was

created second and so on, you can use direct random access:

typedef viennagrid::result_of::vertex<MeshType>::type VertexType;

typedef viennagrid::result_of::id<VertexType>::Type VertexIDType;

cell_vertices[0] = viennagrid::vertices(mesh)[0]; // vertex #0

cell_vertices[1] = viennagrid::vertices(mesh)[1]; // vertex #1

cell_vertices[2] = viennagrid::vertices(mesh)[5]; // vertex #5

Now we are ready to create the element within the mesh or segment. The generic function

make_element requires the element-to-create type as well as begin and end iterator of a

vertex container.

viennagrid::make_element<CellType>(segment_0,

cell_vertices, cell_vertices+3);

In our case the following shortcut function can also be used, the handles are passed directly.

17



viennagrid::make_triangle(segment_0, vh0, vh1, vh5);

As for vertices, cells have to be pushed in ascending order in order to get the correct IDs

assigned. Note that the cell is always stored inside the mesh - a segment keeps a handle

to the cell as well as its boundary cells only.

In the same way the other triangles are pushed to the respective segment. For triangle #3

in Fig. 3.1, the code is

viennagrid::make_triangle(segment_1, vh2, vh3, vh4);

As an alternative, the creation of elements by providing an explicit cell ID is also supported:

typedef viennagrid::result_of::id<CellType>::Type CellIDType;

viennagrid::make_element_with_id<CellType>(segment_0,

cell_vertices, cell_vertices+3,

CellIDType(42));

18



Chapter 4

Iterators

The (possibly nested) iteration over elements of a mesh is one of the main ingredients for a

plethora of algorithms. Consequently, ViennaGrid is designed such that these iterations

can be carried out in a unified and flexible, yet efficient manner.

At the heart of the various possibilities is the concept of a range. A range provides itera-

tors for accessing a half-open interval [first,one past last) of elements and provides

information about the number of elements in the range. However, a range does not ’own’

the elements which can be accessed through it [13]. Employing the range-concept, any

iteration over elements in ViennaGrid consists of two phases:

• Initialize the range of elements over which to iterate.

• Iterate over the range using the iterators returned by the member functions begin()

and end().

For convenience, a range may also provide access to its elements using operator[] (i.e. ran-

dom access) and thus allowing an index-based iteration. The conditions for random access

availability will also be given in the following.

A tutorial code can be found in examples/tutorial/iterators.cpp.

4.1 Elements in a Mesh or Segment

As usual, the first step is to obtain the types for the range and the respective iterator. To

iterate over all elements of a mesh of type MeshType, the types can be obtained from the

element_range and iterator meta-functions:

using namespace viennagrid;

//non-const:

typedef result_of::element_range<MeshType, ElementTag>::type ElementRange;

typedef result_of::iterator<ElementRange>::type ElementIterator;

For segments, all occurrences of MeshType and mesh have to be replaced by SegmentType

and segment here and in the following. If const-access to the elements is sufficient, the

19



meta-function const_element_range should be used instead of element_range. For in-

stance, the required types for a const-iteration over vertices is given by

//const:

typedef result_of::const_element_range<MeshType, vertex_tag>::type

ConstVertexRange;

typedef result_of::iterator<ConstVertexRange>::type

ConstVertexIterator;

The next step is to set up a range object using the elements function. The general case

of iteration over elements of a certain ElementTag using some range type NCellRange is

handled by

NCellRange elements(mesh);

For the example of const-iteration over vertices, this results in

ConstVertexRange vertices(mesh);

Once the range is set up, iteration is carried out in the usual C++ STL manner:

for (ElementIterator it = elements.begin();

it != elements.end();

++it)

{ /* do something */}

For reference, the complete code for printing all vertices of a mesh is:

using namespace viennagrid;

typedef result_of::const_element_range<MeshType, vertex_tag>::type

ConstVertexRange;

typedef result_of::iterator<ConstVertexRange>::type ConstVertexIterator;

ConstVertexRange vertices(mesh);

for (VertexIterator vit = vertices.begin();

vit != vertices.end();

++vit)

{ std::cout << *vit << std::endl; }

It should be emphasized that this code snippet is valid for arbitrary geometric dimensions

and arbitrary mesh configurations (and thus cell types). Inside a template function or

template class, the typename keyword needs to be added after each typedef.

In some cases, e.g. for a parallelization using OpenMP[14], it is preferred to iterate over all

cells using an index-based for-loop rather than an iterator-based one. If the range is either

a vertex range of a mesh, or a cell range of a mesh or segment, this can be obtained by

ElementRange elements(mesh);

for (std::size_t i=0; i<elements.size(); ++i)

{ do_something(elements[i]); }

It is also possible to use the range only implicitly:

for (std::size_t i=0;

i < viennagrid::elements<ElementTag>(mesh).size();

++i)

{ do_something(viennagrid::elements<ElementTag>(mesh)[i]); }

20



However, since the repeated construction of the range object can have non-negligible setup

costs, the latter code is not recommended.

In ViennaGrid 2.1.0, operator[] is not available for ranges obtained from a

mesh other than vertex or cell ranges. For segments, operator[] is only available

for cell ranges.

Shortcut meta-function are available for ranges, too. For example, the vertex range and

iterator type can be obtained directly via

typedef result_of::const_vertex_range<MeshType>::type ConstVertexRange;

typedef result_of::iterator<ConstVertexRange>::type ConstVertexIterator;

Similarly, instead of specifying the element tag directly, one can use the convenience func-

tions vertices(), lines(), edges(), triangles(), quadrilaterals(), polygons(), plcs

(), tetrahedra(), and hexahedra() for the quick extraction of ranges, e. g.

for (std::size_t i=0; i<viennagrid::triangles(mesh).size(); ++i)

{

do_something(viennagrid::triangles(mesh)[i]);

}

4.2 Boundary Elements Iteration

In addition to an iteration over all elements of a mesh or segment, it may be required to

iterate over boundary elements such as all edges of a triangle.

As in the previous section, the range and iterator types are obtained from the element_range

and iterator meta-functions:

//non-const:

typedef result_of::element_range<CellType, line_tag>::type

EdgeOnCellRange;

typedef result_of::iterator<EdgeOnCellRange>::type

EdgeOnCellIterator;

const-ranges are obtained via const_element_range instead of element_range. Mind that

the first argument of element_range denotes the enclosing entity (the cell) and the second

argument denotes the boundary element tag (line_tag or edge_tag for an edge), and thus

preserves the structure already used for the type retrieval for iterations on the mesh.

Iteration is then carried out in the same manner as for a mesh, with element taking the

role of the mesh in the previous chapter. The following snippet print all edges of an element:

EdgeOnCellRange edges_on_cell(element);

for (EdgeOnCellIterator eocit = edges_on_cell.begin();

eocit != edges_on_cell.end();

++eocit)

{ std::cout << *eocit << std::endl; }

For all topological dimensions, an index-based iteration is possible provided that the stor-

age of the respective boundary elements has not been disabled. The previous code snippet

can thus also be written as

21



EdgeOnCellRange edges_on_cell(element);

for (std::size_t i=0; i<edges_on_cell.size(); ++i)

{ do_something(edges_on_cell[i]); }

or

typedef viennagrid::edge_tag EdgeTag;

for (std::size_t i=0;

i < viennagrid::elements<EdgeTag>(element).size();

++i)

{ std::cout << viennagrid::elements<EdgeTag>(element)[i] << std::endl; }

The use of the latter is again discouraged for reasons of possible non-negligible repeated

setup costs of the ranges involved.

Finally, ViennaGrid allows for iterations over the vertices of boundary elements of an

element in the reference orientation imposed by the element, which is commonly required

for ensuring continuity of a quantity along cell interfaces. Note that by default the iteration

is carried out along the orientation imposed by the element in the way it is stored globally

inside the mesh. The correct orientation of vertices with respect to the hosting element is

established by the free function local_vertex(). For instance, the vertices of a boundary

element boundary_element at the boundary of an element element are printed in local

orientation using the code lines

for (std::size_t i=0;

i < viennagrid::vertices(boundary_element).size();

++i)

std::cout << viennagrid::local_vertex(element, boundary_element, i)

<< std::endl;

The use of local_vertex can be read as follows: For the element element, return the

vertex of the boundary element boundary_element at local position i.

4.3 Coboundary Element Iteration

A frequent demand of mesh-based algorithms is to iterate over so-called coboundary ele-

ments of an element T . The coboundary elements of an element T are given by all ele-

ments of a mesh or segment, for which one of the boundary elements is T . For example,

the coboundary edges of a vertex T are all edges where one of the two vertices is T .

In contrast to boundary elements, the number of coboundary elements of an element from

the family of simplices or hypercubes is not known at compile time. Another difference

to the case of boundary elements is that the number of coboundary elements depends on

the mesh or segment under consideration. Considering the interface edge/facet connecting

vertices 1 and 4 in the sample mesh from Fig. 3.1, the coboundary triangles within the

mesh are given by the triangles 1 and 2. However, within segment 0, the set of coboundary

triangles is given by the triangle 1 only, while within segment 1 the set of coboundary

triangles consists of triangle 2 only. Thus, the use of segments can substantially simplify

the formulation of algorithms that act on a subregion of the mesh only.

The necessary range types are obtained using the same pattern as in the two previous sec-

tions. Assuming that a vertex type VertexType is already defined, the range of coboundary

22



edges as well as the iterator are obtained using the coboundary_range and iteratormeta-

functions in the viennagrid namespace:

//non-const:

typedef result_of::coboundary_range< MeshType, VertexType, edge_tag

>::type EdgeOnVertexRange;

typedef result_of::iterator<EdgeOnVertexRange>::type

EdgeOnVertexIterator;

The first argument to coboundary_range is the context mesh or segment, the second is the

reference element for the iteration, and the third argument is the element tag of the ele-

ments in the range. A range of const-edges is obtained using the const_coboundary_range

meta-function instead of the non-const meta-function coboundary_range. Moreover, it

shall be noted that an additional typename keyword is required inside template functions

and template classes.

To set up the range object, the coboundary_elements function from the viennagrid names-

pace is reused. Unlike in the previous sections, it requires two arguments for setting up

a coboundary range: The first argument refers to the enclosing container of elements and

must be either a mesh or a segment and the second argument is the reference element.

The range holding all edges in the mesh sharing a common vertex v is thus set up as

EdgeOnVertexRange edges_on_v(mesh, v);

If the range should hold only the coboundary edges from a segment seg, the above code

line has to be modified to

EdgeOnVertexRange edges_on_v(seg, v);

An iteration over all edges is then possible in the usual STL-type manner. For example, all

coboundary edges of v in the range are printed using the code:

for (EdgeOnVertexIterator eovit = edges_on_v.begin();

eovit != edges_on_v.end();

++eovit)

{ std::cout << *eovit << std::endl; }

One may also use an implicit form which does not set up the range explicitly:

for (EdgeOnVertexIterator eovit = viennagrid::coboundary_elements<

VertexType, edge_tag>(mesh, v).begin();

eovit != viennagrid::coboundary_elements<

VertexType, edge_tag>(mesh, v).end();

++eovit)

{ std::cout << *eovit << std::endl; }

Random access, i.e. operator[] is available for all topological levels. Thus, the loop above

may also be written as

for (std::size_t i=0; i<edges_on_v.size(); ++i)

{

std::cout << edges_on_v[i] << std::endl;

}

or

23



for (std::size_t i=0;

i < viennagrid::coboundary_elements<

VertexType, edge_tag>(mesh, v).size();

++i)

{

std::cout << viennagrid::coboundary_elements<

VertexType, edge_tag>(mesh, v)[i] << std::endl;

}

where the latter form is not recommended for reasons of overheads involved in setting up

the temporary ranges.

Finally, it should be noted that coboundary information is not natively available in the

mesh data structure. If and only if for the first time the coboundary elements Cn of an

element T , are requested, an iteration over all elements of coboundary type of the mesh or

segment with nested element T boundary iteration is carried out to collect the topological

information. This results in extra memory requirements and additional computational

costs, hence we suggest to use boundary iterations over coboundary iterations whenever

possible.

Prefer the use of boundary iterations over coboundary iterations to minimize mem-

ory footprint.

4.4 Neighbor Element Iteration

In addition to boundary and coboundary iterations, ViennaGrid 2.1.0 also supports it-

eration over neighboring elements of the same type. Two elements are neighbors if they

share a connector element of different type (with lower topologic dimension). For example,

one may iterate over all neighboring triangles of a reference triangle with vertex as con-

nector element type. As well as with coboundary iteration, a context mesh or segment has

to be provided.

The necessary range types are obtained using the same pattern as with coboundary itera-

tion: Assuming that a triangle type TriangleType is already defined, the range of neigh-

bor triangles as well as the iterator are obtained using the neighbor_range and iterator

meta-functions in the viennagrid namespace:

//non-const:

typedef result_of::neighbor_range< MeshType, TriangleType, vertex_tag

>::type NeighborTriangleRange;

typedef result_of::iterator<NeighborTriangleRange>::type

NeighborTriangleIterator;

The first argument to neighbor_range is the context mesh or segment, the second is the

reference element type for the iteration, and the third argument is the connector element

tag. A range of const-edges is obtained using the const_neighbor_rangemeta-function in-

stead of the non-const meta-function neighbor_range. Moreover, it shall be noted that an

additional typename keyword is required inside template functions and template classes.

To set up the range object, the neighbor_elements function from the viennagrid names-

pace is reused. Unlike in the previous sections, it requires two arguments for setting up a

24



neighbor range: The first argument refers to the enclosing container of elements and must

be either a mesh or a segment and the second argument is the reference element. The

range holding all triangles in the mesh sharing a common vertex with triangle t is thus set

up as

EdgeOnVertexRange neighbor_triangles_of_t(mesh, t);

If the range should hold only the neighbor triangles from a segment seg, the above code

line has to be modified to

EdgeOnVertexRange neighbor_triangles_of_t(seg, t);

An iteration over all triangles is then possible in the usual STL-type manner. For example,

all neighbor triangles of t in the range are printed using the code:

for (NeighborTriangleIterator ntit = neighbor_triangles_of_t.begin();

ntit != neighbor_triangles_of_t.end();

++ntit)

{ std::cout << *ntit << std::endl; }

One may also use an implicit form which does not set up the range explicitly:

for (NeighborTriangleIterator

ntit = viennagrid::neighbor_elements<TriangleType, vertex_tag

>(mesh, t).begin();

ntit != viennagrid::neighbor_elements<TriangleType, vertex_tag

>(mesh, t).end();

++ntit)

{ std::cout << *ntit << std::endl; }

Random access, i.e. operator[] is available for all topological levels. Thus, the loop above

may also be written as

for (std::size_t i=0; i<neighbor_triangles_of_t.size(); ++i)

{ std::cout << neighbor_triangles_of_t[i] << std::endl; }

or

for (std::size_t i=0;

i < viennagrid::neighbor_elements<

TriangleType, vertex_tag>(mesh, t).size();

++i)

{

std::cout << viennagrid::neighbor_elements<

TriangleType, vertex_tag>(mesh, t)[i] << std::endl;

}

where the latter form is not recommended for reasons of overheads involved in setting up

the temporary ranges.

25



Chapter 5

Data Storage and Retrieval

One of the central operations whenever dealing with meshes is the storage and the re-

trieval of data. A common approach is to model vertices, edges and the like as separate

classes and add data members to them. ViennaGrid does not follow this approach for

three reasons:

1. Reusability: As soon as a data member is added to any of these classes, the class is

refined towards a particular use case. For example, adding a color data member to a

triangle class reduces reusability for e.g. Finite Element methods considerably.

2. Flexibility: Whenever a data member needs to be added for a particular functional-

ity, one has to carefully extend the existing class layout. Moreover, it is somewhere

between hard to impossible to ’just add a data member for the moment’ in a produc-

tive environment. Moreover, the class needs to be adjusted if the data type changes.

3. Efficiency: A data member that is never used obviously wastes memory. For large

numbers of objects it might be even advisable to use special containers for data that

is relevant for a tiny fraction of all objects only (e.g. mesh boundary flags). Apart from

reduced memory footprint, the possibly tighter grouping of data allows for better CPU

caching.

Previous version of ViennaGrid relies on ViennaData [15] for the storage of data associ-

ated with topological objects. ViennaGrid 2.1.0 dropped the dependencies on ViennaData

in favor of the accessor and the field concept. These concepts are essential for decoupling

the actual algorithm implementation from the underlying storage. Although in many cases

a user will store data in a plain array using e.g. a numeric vertex ID as the index, a vertex

may not carry a numeric ID at all for the sake of smaller memory footprint. In such case

a user may prefer to store data in a map using the vertex address as key object. Using

the accessor and field concepts, algorithm implementations do not need to be duplicated in

order to deal with both storage types.

An accessor is a simple class which manages access to data stored on objects. For example,

one might want to store potential values with type double on vertices. An accessor provides

an operator() returning a reference to the data stored for that object:

SomeAccessorType my_accessor;

my_accessor(vertex) = 42.0;

std::cout << my_accessor(vertex) << std::endl;

26



Member name Description

value_type The value type which is stored in the acces-

sor.

access_type The access type on which the data is stored.

reference A reference to value_type.

const_reference A const reference to value_type.

pointer A point to value_type.

const_pointer A const pointer to value_type.

is_valid()const Returns true if the accessor is in a valid

stage.

find(AccessType const&) Searches for the data of element. Returns

pointer to data. If there is no data available,

NULL is returned.

operator()(AccessType const&) Retrieves data for the element. Returns a ref-

erence to the data. Non-const: if no data is

available it is created. Const: if data is not

available, the behavior is undefined.

at(AccessType const&) Same as operator(), but throws std::

out_of_range if data is not available.

Table 5.1: Accessor concepts

Member name Description

operator()(AccessType const&) Retrieves data for element and returns a ref-

erence to the data. Non-const: same behavior

as accessor. Const: if data is not available, a

default value is returned

Table 5.2: Field concept. Same as the accessor concept except for the const-access case.

Each class fulfilling the accessor concepts presented in Table 5.1 can be used in ViennaGrid.

Beside accessors, ViennaGrid defines the field concept. A field is similar to an accessor but

more suitable for sparse storage. The same concepts as for accessor apply to field concepts

with the exception of the concepts in Table 5.2.

Usually an accessor or field does not store the data on its own. Instead, they reference a

container where the data is stored. ViennaGrid provides meta-functions and function to

define and create accessor or fields from base containers. The example below demonstrates

the use of ViennaGrid accessors.

27



std::vector<int> int_vector; // instantiate a simple int vector

// instantiate an accessor which uses the int vector

viennagrid::result_of::accessor<std::vector<int>, VertexType>::type

int_accessor(int_vector);

int_accessor(my_vertex) = -3;

// obtain a container for storing double values on vertices using std::map

typedef viennagrid::result_of::accessor_container<VertexType, double,

viennagrid::std_map_tag>::type ContainerType;

// instantiate a container and an accessor for the container

ContainerType container;

viennagrid::result_of::accessor<ContainerType, VertexType>::type

container_accessor(container);

Fields are used accordingly. The following storage tags are directly available in ViennaGrid

2.1.x for use with standard STL containers:

Tag Container

std_vector_tag std::vector

std_deque_tag std::deque

std_list_tag std::list

std_map_tag std::map

std_set_tag std::set

28



Chapter 6

Algorithms

The iterations and data accessors described in the previous Chapters allow for a plethora

of algorithms. Most of them make use of basic functionalities such as the inner product of

vectors, or the volume of a n-cell. ViennaGrid ships with a number of such basic tools,

which are listed in Tab. 6.1 and discussed in the following.

The individual algorithms are located in the viennagrid/algorithm/ folder. A tutorial

covering the algorithms explained in this chapter can be found in examples/tutorial/

algorithms.cpp.

Make sure to include the respective header-file when using one of the algorithms

explained below!

6.1 Point/Vector-Based

This section details algorithms in ViennaGrid requiring geometric information only. The

point type in ViennaGrid should be seen in this context mostly as a vector type rather

than a representation of a geometric location, reflecting the duality of points and vectors

in the Euclidean space.

6.1.1 Angles

To compute the angle between two vectors pointing from the origin to points p1 and p2, call

viennagrid::angle(p1, p2);

If the vectors should have another common point p3 which acts as a translated origin, use

viennagrid::angle(p1, p2, p3);

which is equivalent to calling

viennagrid::angle(p1-p3, p2-p3);

In a three-dimensional coordinate system one can in addition compute the solid angle de-

fined by three points with respect to the origin via

29



Algorithm Filename Interface Function

Angles angle.hpp angle(origin, p0, p1)

Cross Product cross prod.hpp cross_prod(a, b)

Determinant geometry.hpp determinant(a, b, ...)

Induced Volume spanned volume.hpp spanned_volume(a, b, ...)

Inner Product inner prod.hpp inner_prod(a, b)

Orthogonalization geometry.hpp orthogonalize(p_begin, p_end, a)

Vector Norms norm.hpp norm(a, tag)

Centroid computation centroid.hpp centroid(element)

Circumcenter comp. circumcenter.hpp circumcenter(element)

Distance distance.hpp distance(element1, element2)

Normal vector geometry.hpp normal_vector(element)

Surface computation surface.hpp surface(element)

Volume computation volume.hpp volume(element)

Affine transformation geometric transform.hpp affine_transform(mesh, matrix, p)

Boundary detection boundary.hpp is_boundary(domseg, element)

Bounding box geometry.hpp bounding_box(mesh)

Closest points closest points.hpp closest_points(element1, element2)

Distance distance.hpp distance(element1, element2)

Extract boundary extract boundary.hpp extract_boundary(mesh_in, mesh_out)

Extract seed points extract seed points.hpp extract_seed_points(mesh, cont)

Hyperplane refinement hyperplane refine.hpp hyperplane_refine(...)

Interface detection interface.hpp is_interface(seg1, seg2, element)

Mesh size geometry.hpp mesh_size(mesh)

Quantity transfer quantity transfer.hpp quantity_transfer(...)

Simplex refinement refine.hpp refine(tag, mesh)

Scale mesh geometric transform.hpp scale(mesh, factor, center)

Surface computation surface.hpp surface(meshseg)

Volume computation volume.hpp volume(meshseg)

Voronoi grid voronoi.hpp apply_voronoi(meshseg, ...)

Table 6.1: List of algorithms available in viennagrid/algorithm/ grouped by the objects

they are acting on. Additional overloads may be available. a and b denote vectors, p_begin

and p_end refer to begin- and end-iterators over vectors, element to an element, mesh to a

mesh, seg1 and seg2 to segments, and meshseg to either a mesh or a segment.

30



viennagrid::solid_angle(p1, p2, p3);

If the solid angle should be determined with respect to another point p4, use

viennagrid::solid_angle(p1, p2, p3, p4);

The dihedral angle of two planes given by the points (a1, a2, a3) and (b1, b2, b3), respec-

tively, is computed using

viennagrid::dihedral_angle(a1, a2, a3, b1, b2, b3);

6.1.2 Cross Products

The cross-product of two vectors (i.e. ViennaGrid points) p0 and p1 is defined for the

three-dimensional space and computed with ViennaGrid as

viennagrid::cross_prod(p0, p1)

The following code calculates and prints the cross-product of the vectors (1, 0, 0)T and

(0, 1, 0)T:

PointType p0(1, 0, 0);

PointType p1(0, 1, 0);

std::cout << viennagrid::cross_prod(p0, p1) << std::endl; //0 0 1

If the two vectors are given in different coordinate systems, the result vector will have the

same coordinate system as the first argument.

6.1.3 Determinant

The determinant of the matrix obtained from writing n vectors (points) of dimension n

into a square n × n-matrix is a basic building block for several algorithms. Rather than

extracting the coordinates of individual points, the determinant can be directly computed

by passing the respective points to viennagrid::determinant():

PointType p0(1, 0, 0);

PointType p1(0, 1, 0);

PointType p2(0, 0, 1);

std::cout << viennagrid::determinant(p0, p1, p2) << std::endl; //1

and similarly for the two-dimensional as well as the one-dimensional case.

6.1.4 Induced Volume

The volume of n + 1 vectors spanning a simplex (line, triangle, tetrahedron...) in the n-

dimensional space is computed via e.g.

PointType p0(0, 0);

PointType p1(0, 1);

PointType p2(1, 0);

std::cout << viennagrid::spanned_volume(p0, p1, p2) << std::endl; //0.5

31



for the two-dimensional case. If the signed volume taking the orientation of vectors into

account is required, use signed_spanned_volume().

6.1.5 Inner Products

Unlike cross products, inner products (aka. dot products) are well defined for arbitrary

dimensions. In ViennaGrid 2.1.0 an inner product of the form

(x,y) =
N−1
∑

i=0

xiyi (6.1)

is available with the function inner_prod(). The following code calculates and prints the

inner product of the vectors (1, 0, 0)T and (0, 1, 0)T:

PointType p0(1, 0, 0);

PointType p1(0, 1, 0);

std::cout << viennagrid::inner_prod(p1, p2) << std::endl; //0

If the two vectors are given in different coordinate systems, the result vector will have the

same coordinate system as the first argument.

6.1.6 Orthogonalization

There are two different variants of orthogonalization implemented: The first orthogonal-

izes a single vector with respect to a container of given vectors:

std::vector<PointType> basis;

basis.push_back(PointType(1.0, 0.0, 0.0));

basis_push_back(PointType(0.0, 1.0, 0.0));

PointType p(1.0, 2.0, 3.0);

std::cout << viennagrid::orthogonalize_vector(basis.begin(), basis.end(),

p) << std::endl; //0 0 3

The second version takes the set of vectors provided by the iterators and orthogonalizes all

vectors using the Gram-Schmidt method:

std::vector<PointType> basis;

basis.push_back(PointType(1.0, 0.0, 0.0));

basis_push_back(PointType(0.0, 1.0, 0.0));

basis_push_back(PointType(1.0, 2.0, 3.0));

viennagrid::orthogonalize(basis.begin(), basis.end());

//vectors in basis: (1 0 0), (0 1 0), (0 0 3)

6.1.7 Vector Norms

Currently, p-norms of the form

‖x‖p =
p

√

√

√

√

N−1
∑

i=0

x
p
i (6.2)

are implemented in the N -dimensional Euclidean space for p = 1, p = 2 and p = ∞. The

three norms for the vector (1, 2, 3)T are computed and printed using the lines

32



PointType p(1, 2, 3);

std::cout << viennagrid::norm_1(p) << std::endl; //6

std::cout << viennagrid::norm_2(p) << std::endl; //3.74

std::cout << viennagrid::norm_inf(p) << std::endl; //3

which are equivalent to

PointType p(1, 2, 3);

std::cout << viennagrid::norm(p, viennagrid::one_tag()) << std::endl;

std::cout << viennagrid::norm(p, viennagrid::two_tag()) << std::endl;

std::cout << viennagrid::norm(p, viennagrid::inf_tag()) << std::endl;

6.1.8 Volume of a Spanned Simplex

It is often handy to compute the n-dimensional volume of a n-simplex embedded in a pos-

sibly higher-dimensional geometric space by providing the locations of the vertices only.

This is provided by spanned_volume(), which is, however, currently limited to n ∈ {1, 2, 3}.
As an example, the two-dimensional volume a triangle with corners at (1, 0, 0), (2, 1, 1) and
(1, 1, 2) is computed and printed by

PointType p0(1, 0, 0);

PointType p1(2, 1, 1);

PointType p2(1, 1, 2);

std::cout << viennagrid::spanned_volume(p0, p1, p2) << std::endl;

6.2 Element-Based

In this section, algorithms defined for geometric objects with additional structure are dis-

cussed. Additional algorithms are likely to be introduced in future releases.

6.2.1 Centroid

The centroid of an element object element in Cartesian coordinates is obtained as

PointType p = viennagrid::centroid(cell_n);

and works for arbitrary topological and geometrical dimensions.

6.2.2 Circumcenter

The circumcenter of a simplex element is obtained in Cartesian coordinates as

PointType p = viennagrid::circumcenter(element);

The computation is restricted to simplices of topologic dimension n ≤ 3. For reasons of

uniformity, also hypercubes can be passed, for which the circumcenter of an embedded

simplex is computed. This leads to valid results and makes sense only for certain regular

33



hypercubes. Thus, the user has to ensure that the hypercube actually has a circum-sphere.

This is e.g. the case for structured tensor-grids.

There is no warning or error issued if a hypercube passed to circumcenter() does

not have a circumcenter.

6.2.3 Distance

The (shortest) distance of arbitrary meshes, segments, elements, or points a and b is com-

puted via viennagrid::distance(a, b). If a and b intersect or a is included in b (or vice

versa), a distance of zero is returned. For example, to compute the distance of a point p

from a triangle t, call

double d = viennagrid::distance(p, t);

The order of arguments does not matter.

If the distance to the boundary of a mesh, segment, or element is needed, use

double d = viennagrid::boundary_distance(p, t);

Note that the value of d is nonzero if p is inside t, e.g. the centroid of t. In terms of perfor-

mance, viennagrid::boundary_distance() is recommended over viennagrid::distance

() whenenver the slightly different semantics do not cause problems.

6.2.4 Normal Vector

The normal vector is obtained via

PointType normal = viennagrid::normal(t);

where t is a triangle or quadrilateral in three spatial dimensions, a line in two spatial

dimensions, or a vertex in one spatial dimension. Note that the orientation of the returned

normal is undefined and should be flipped by the user as needed.

6.2.5 Surface

The surface of an element element is defined as the sum of the volumes of its facet ele-

ments. Therefore, in order to make the calling code

NumericType surf = viennagrid::surface(element);

Currently, surface() is restricted to element with topologic dimension n ≤ 4.

6.2.6 Volume

The n-dimensional volume of an element element is returned by

NumericType vol = viennagrid::volume(element);

and currently restricted to elements with topologic dimension n ≤ 3. No restrictions with

respect to the storage of boundary elements apply.

34



6.3 Mesh/Segment-Based

Algorithms acting on a collection of cells are now considered. These collections are given

in ViennaGrid either as the whole mesh, or as segments.

6.3.1 Affine Transformation

If an affine transformation of the form u = Av + w with transformation matrix A and

displacement vector w should be applied to all points u of a mesh, call

viennagrid::affine_transform(mesh, A, w);

where A is a pointer to the matrix data (of the same type of the point coordinates, usually

double) in row-major layout and w is of the same type as points in the mesh. Note that in

one dimension, A is expected to point to one entry, in two dimensions to four entries, and in

three dimensions to nine entries.

6.3.2 Boundary Detection

Whether or not an element object element is located on the boundary depends on the col-

lection of elements considered. For example, consider the edge/facet [1, 4] in the triangular

sample mesh in Fig. 3.1, which we will refer to as f. It is in the interior of the whole mesh,

while it is also at the boundary of the two segments seg0 and seg1. A sample code snippet

reflecting this is given by

std::cout << viennagrid::is_boundary(mesh, f) << std::endl; //false;

std::cout << viennagrid::is_boundary(seg0, f) << std::endl; //true;

std::cout << viennagrid::is_boundary(seg1, f) << std::endl; //true;

Note that is_boundary() induces some additional setup costs at the first time the function

is called. However, subsequent calls are accelerated and will usually compensate for the

setup costs.

6.3.3 Bounding Box

The (minimum) bounding box with all edges parallel to one of the Cartesian coodinate axes

within which all vertices of a mesh are contained (including boundaries) is returned by

std::pair<PointType, PointType> extremal_points;

extremal_points = viennagrid::bounding_box(mesh);

where extremal_points are two points describing the diagonal of the box. Instead of sup-

plying a mesh, one may also supply a begin- and end-iterator to a set of points.

6.3.4 Extract Boundary

If you need to extract the boundary (hull) of a mesh to a new mesh, use

viennagrid::extract_boundary(mesh_in, mesh_out);

35



to fill mesh_out with the boundary mesh of mesh_in, which may be a mesh or a segment.

Note that the mesh types need to agree: To extract the boundary/hull of a tetrahedral mesh

in three dimensions, provide a triangular mesh in three spatial dimensions as mesh_out.

6.3.5 Interface Detection

Similar to the detection of boundary facets, elements on the interface between two seg-

ments are frequently of particular interest. An element element can be checked for being

on the interface of two segments seg0 and seg1 using

std::cout << viennagrid::is_interface(seg0, seg1, element) << std::endl;

Note that is_interface() induces some setup costs the first time it is called for a pair of

segments.

6.3.6 Mesh Size

If you need a rough estimate of the length scale of the entire mesh, use

viennagrid::mesh_size(mesh)

to have a rough comparison value for absolute tolerances. Currently this is implemented

as the diagonal of the bounding box, but users are advised to not rely on this particular

implementation detail.

6.3.7 Quantity Transfer

For many applications in computational science one may have data associated with ver-

tices, but may need to interpolate them to cell centers, or vice versa. Such an interpolation

is provided by ViennaGrid in a generic manner, where one can transfer data from any el-

ement type to any other element type in a mesh. Additional control over the elements to

be considered for the averaging is provided via filters. The interpolation to be used is also

provided by the user:

viennagrid::quantity_transfer(mesh, accessor_src, setter_dest,

averager,

filter_src, filter_dest);

Here, mesh is a mesh or a segment, accessor_src is a functor returning the data for the

source elements, setter_dest writes the data for the destination elements, averager is a

functor for averaging/interpolating the source data adjacent to a destination element, and

filter_src, filter_dest are functors returning true if the respective source or destina-

tion element should be considered for the transfer.

6.3.8 Refinement

ViennaGrid 2.1.0 allows a uniform and a local refinement of simplicial meshs. The

refinement of hypercuboidal meshs is scheduled for future releases. It has to be noted that

the resulting refined mesh is written to a new mesh, thus there are no multigrid/multilevel

capabilities provided yet.

36



To refine a mesh uniformly, the line

MeshType refined_mesh;

viennagrid::refine_uniformly(mesh, refined_mesh);

is sufficient.

Refinement is also supported for meshs with segmentations. Segment information is pre-

served upon refinement.

MeshType refined_mesh;

SegmentationType refined_segmentation;

viennagrid::refine_uniformly(mesh, segmentation,

refined_mesh, refined_segmentation);

The local refinement of a mesh requires that the respective cells or edges for refinement

are tagged. This refinement information is applied to the mesh using accessors or fields,

cf. Chapter 5. First of all a tag container and an accessor has to be created:

std::vector<bool> cell_refinement_container;

viennagrid::result_of::accessor<std::vector<bool>, CellType>::type

cell_refinement_accessor(cell_refinement_container);

To tag a cell c for refinement, the line

cell_refinement_accessor(c) = true;

is sufficient. In a similar way one proceeds for other cells or edges in the mesh. The

refinement process is then triggered by

MeshType refined_mesh;

viennagrid::cell_refine(mesh, refined_mesh, cell_refinement_accessor);

or, for segmentations

MeshType refined_mesh;

SegmentationType refined_segmentation;

viennagrid::cell_refine(mesh, segmentation,

refined_mesh, refined_segmentation,

cell_refinement_accessor);

6.3.9 Scale

The free function scale() scales a mesh by a certain factor alpha. For example, to scale

all point coordinates by a factor of two, one writes

viennagrid::scale(mesh, 2.0);

If the scaling should be with respect to a point other than the origin, one can pass the

scaling center as a third argument, e.g.

typedef result_of::point<MeshType>::type PointType;

viennagrid::scale(mesh, 2.0, PointType(1,1));

37



i jA
[i
,j
]

V[i,j]

Figure 6.1: Schematic of a Delaunay mesh with its dual Voronoi diagram, where the

box containing vertex j is highlighted. The function voronoi() computes and stores the

Voronoi volume V[i,j] and the interface area A[i,j] associated with each edge [i, j]. The total

box volume associated with each vertex is also stored on the vertex.

6.3.10 Surface

The surface of a mesh or segment domseg is given by the sum of the volumes of the bound-

ary facets and returned by the convenience overload

NumericType surf = viennagrid::surface(domseg);

Note that facets interfacing cells outside the segment are also considered as boundary

facets of the segment.

6.3.11 Volume

The volume of a mesh or segment domseg is returned by

NumericType vol = viennagrid::volume(domseg);

and currently restricted to maximum topological dimension n ≤ 3.

6.3.12 Voronoi Information

A Voronoi diagram of a Delaunay tessellation (or triangulation) is a decomposition of the

mesh into certain boxes containing one vertex each. The boxes have the property that all

points inside the box are closer to the vertex within the box than to any other vertex in

the mesh. By simple geometric arguments one finds that the corners of Voronoi boxes are

given by the circumcenters of the triangles.

The function apply_voronoi() computes the volumes and interfaces associated with a

Voronoi diagram. The following values are stored on the mesh (cf. Fig. 6.1)

38



• The volume V[i,j] of the polyhedron centered around the edge [i, j] with edges given by

the connections of the vertices i and j with the circumcenters of the coboundary cells

of the edge is stored on the edge [i, j].

• The interface area A[i,j] of the boxes for the vertices i and j on the edge [i, j].

• The box volume Vi of the box containing vertex i for each vertex i.

The voronoi values are stored in the corresponding accessors/containers using the lines

using namespace viennagrid;

typedef result_of::voronoi_cell_contribution<ConstCellHandleType>::type

ContributionType;

// define containers for interface contributions and accessors

std::vector<double> interface_areas;

std::vector<ContributionType> interface_contrib;

result_of::accessor< std::vector<double>, EdgeType >::type

interface_areas_accessor(interface_areas);

result_of::accessor< std::vector<ContributionType>, EdgeType >::type

interfaces_contrib_accessor(interface_contrib);

// define containers for box volumes and accessors on vertices

std::vector<double> vertex_box_volumes;

std::vector<ContributionType> vertex_box_volume_contrib;

result_of::accessor< std::vector<double>, VertexType >::type

vertex_box_volumes_accessor(vertex_box_volumes);

result_of::accessor< std::vector<ContributionType>, VertexType >::type

vertex_box_volume_contrib_accessor(vertex_box_volume_contrib);

// define containers for box volumes and accessors on edges

std::vector<double> edge_box_volumes;

std::vector<ContributionType> edge_box_volume_contrib;

result_of::accessor< std::vector<double>, EdgeType >::type

edge_box_volumes_accessor(edge_box_volumes);

result_of::accessor< std::vector<ContributionType>, EdgeType >::type

edge_box_volume_contrib_accessor(edge_box_volume_contrib);

apply_voronoi<CellType>(

mesh,

interface_areas_accessor, interfaces_contrib_accessor,

vertex_box_volumes_accessor, vertex_box_volume_contrib_accessor,

edge_box_volumes_accessor, edge_box_volume_contrib_accessor)

);

Note that the interface for apply_voronoi() is purely defined via the abstract accessors

defined in Chapter 5. Thus, the user is free to pick any container as long as a suitable

wrapper fulfilling the accessor concept is provided.

39



Chapter 7

Input/Output

This chapter deals with the typical input and output operations: Reading a mesh from a

file, and writing a mesh to a file. In order not to give birth to another mesh file format,

ViennaGrid does not bring its own file format. Instead, the library mainly relies on the

XML-based VTK [16] file format [17].

A tutorial code can be found in examples/tutorial/io.cpp.

Let us know about your favorite file format(s)! Send an email to our mailinglist:

viennagrid-support@lists.sourceforge.net. It increases the chances of

having a suitable reader and/or writer included in the next ViennaGrid release.

7.1 Readers

Due to the high number of vertices and cells in typical meshes, a manual setup of a mesh

in code is soon inefficient. Therefore, the geometric locations as well as topological connec-

tions are typically stored in mesh files.

Currently, ViennaGrid supports only two file formats natively. However, readers for other

file formats can be easily added by the user when following the explanations for mesh

setup in Chapter 3. A different approach is to convert other file formats to one of the

formats detailed in the following.

7.1.1 Neper

The .tess-files created with Neper [18] can be imported directly. To read a mesh from a

.mesh file with name filename to a mesh, the lines

viennagrid::io::neper_tess_reader my_neper_reader;

my_neper_reader(mesh, filename);

should be used. A container of seed points can be specified as an optional third argument.

Segmentations are currently not supported. Note that the reader throws an exception if

the file cannot be opened or if there is a parser error.

40



7.1.2 Netgen

The .mesh-files provided with Netgen [19] can be imported directly. These files are ob-

tained from Netgen from the File->Export Mesh... menu item. Note that only trian-

gular and tetrahedral meshes are supported.

To read a mesh from a .mesh file with name filename to a mesh with segmentation, the

lines

viennagrid::io::netgen_reader my_netgen_reader;

my_netgen_reader(mesh, segmentation, filename);

should be used. Note that the reader might throw an std::exception if the file cannot be

opened or if there is a parser error.

The file-format is simplistic: The first number refers to the number of vertices in the mesh,

then the coordinates of the vertices follow. After that, the number of cells in the mesh

is specified. Then, each cell is specified by the index of the segment and the indices of

its vertices, each using index base 1. For example, the .mesh-file for the sample mesh in

Fig. 3.1 is:

6

0 0

1 0

2 0

2 1

1 1

0 1

4

1 1 2 6

1 2 5 6

2 2 3 5

2 3 4 5

7.1.3 Tetgen

The .poly-files provided with Tetgen [20] can be imported directly. Note that only PLC

meshes are supported.

To read a mesh from a .poly file with name filename to a mesh with segmentation, the

lines

viennagrid::io::poly_reader my_tetgen_reader;

my_tetgen_reader(mesh, segmentation, filename);

should be used. Note that the reader might throw an std::exception if the file cannot be

opened or if there is a parser error.

7.1.4 Synopsys BND Files

The .bnd-files are used within the commercial Synopsys toolchain. ViennaGrid provides

a reverse-engineered reader, for which additional feedback is highly welcome.

41



To read a mesh from a .bnd file with name filename to a mesh with segmentation, the

lines

viennagrid::io::bnd_reader my_bnd_reader;

my_bnd_reader(mesh, segmentation, filename);

are sufficient. As usual, the reader throws an exception if the file cannot be opened or if

there is a parser error.

7.1.5 VTK

The VTK file format is extensively documented [17] and allows to store mesh quantities as

well. The simplest way of reading a VTK file my_mesh.vtu is similar to the Netgen reader:

viennagrid::io::vtk_reader<MeshType, SegmentationType> my_vtk_reader;

my_vtk_reader(mesh, segmentation, "my_mesh.vtu");

Note that the mesh type is required as template argument for the reader class, the seg-

mentation type is optional. By default result_of::segmentation<MeshType>::type is

used.

ViennaGrid supports single-segmented .vtu files consisting of one <piece>. and always

reads a single-segmented mesh to its first segment. If a segment does not already exist on

the mesh, one is created.

For multi-segment meshes, the Paraview [21] data file format .pvd can be used, which

is a XML wrapper holding information about the individual segments in .vtu files only.

Vertices that show up in multiple segments are automatically fused. Example meshes can

be found in examples/data/.

The VTK format allows to store scalar-valued and vector-valued data sets, which are iden-

tified by their names, on vertices and cells. These data sets are directly transferred to the

ViennaGrid mesh using accessor as described in Chapter 5. By default, data is stored

using the data name string as key of type std::string. Scalar-valued data is stored as

double, while vector-valued data is stored as std::vector<double>.

There are two ways to obtain the data stored on vertices and cells: query the data after

import or register an accessor/field before import. Registering an accessor/field with an

import is simply done by using the function add_*_data_on_*, see Tab. 7.1

std::vector<double> scalar_values;

viennagrid::result_of::field< std::vector<double>, VertexType >::type

scalar_values_field;

std::vector< std::vector<double> > vector_values;

viennagrid::result_of::field<

std::vector< std::vector<double> >, CellType

>::type vector_values_field;

viennagrid::io::vtk_reader<MeshType> my_vtk_reader;

viennagrid::io::add_scalar_data_on_vertices(my_vtk_reader,

scalar_values_field, "potential");

viennagrid::io::add_vector_data_on_cells(my_vtk_reader,

vector_values_field, "potential_vector_field");

my_vtk_reader(mesh, segmentation, "my_mesh.vtu");

42



Function name Data description

add_scalar_data_on_vertices scalar-valued, vertex-based

add_vector_data_on_vertices vector-valued, vertex-based

add_scalar_data_on_cells scalar-valued, cell-based

add_vector_data_on_cells vector-valued, cell-based

Table 7.1: Free functions in namespace viennagrid::io for customizing reader and writer

objects. The three parameters to each of these functions is the reader object, the accessor/-

field and the VTK data name.

Function name Data description

vertex_scalar_field scalar-valued, vertex-based

vertex_vector_field vector-valued, vertex-based

cell_scalar_field scalar-valued, cell-based

cell_vector_field vector-valued, cell-based

Table 7.2: Free functions in namespace viennagrid::io for customizing reader and writer

objects. The three parameters to each of these functions is the reader object, the accessor/-

field and the VTK data name.

A list of all names identifying data read from the file can be obtained the functions

Function name Data description

get_scalar_data_on_vertices scalar-valued, vertex-based

get_vector_data_on_vertices vector-valued, vertex-based

get_scalar_data_on_cells scalar-valued, cell-based

get_vector_data_on_cells vector-valued, cell-based

The list of all scalar vertex data sets read is then printed together with the respective

segment index as

using namespace viennagrid::io;

for (size_t i=0; i<get_scalar_data_on_vertices(reader).size(); ++i)

std::cout << "Segment " << get_scalar_data_on_vertices(reader)[i].first

<< ": "

<< get_scalar_data_on_vertices(reader)[i].second << std::endl;

After the import process a scalar/vector data field can be obtained with the member func-

tions described in table Tab. 7.2. In the next example a scalar field is obtained for the data

values with VTK name potential and for the segment with ID 42.

viennagrid::result_of::field<std::vector<double>, VertexType>

scalar_field =

my_vtk_reader.cell_scalar_field( "potential", 42 );

43



7.2 Writers

Since ViennaGrid does not provide any visualization capabilities, the recommended pro-

cedure for visualization is to write to one of the file formats discussed below and use one of

the free visualization suites for that purpose.

7.2.1 Comsol mphtxt

The COMSOL multiphysics suite provides its own text-based file format with extension

.mphtxt. To write a ViennaGrid mesh to this format, use

viennagrid::io::mphtxt_writer my_comsol_writer;

my_comsol_writer(mesh, segmentation, "filename");

Here, mesh and segmentation denote the mesh and its segmentation as usual, and the

third argument denotes the filename.

7.2.2 OpenDX

OpenDX [22] is an open source visualization software package based on IBM’s Visualiza-

tion Data Explorer. The writer supports either one vertex-based or one cell-based scalar

quantity to be written to an OpenDX file. OpenDX writer does not support segmentations.

The simplest way to write a mesh of type MeshType to a file "my_mesh.out" is

viennagrid::io::opendx_writer<MeshType> my_dx_writer;

my_dx_writer(mesh, "my_mesh.out");

To write quantities stored on the mesh, the free functions from Tab. 7.1 are used. For exam-

ple, to visualize a scalar vertex-quantity of type double stored in an accessor (cf. Chapter

5), the previous snippet is modified to

using viennagrid::io;

opendx_writer<MeshType> my_dx_writer;

add_scalar_data_on_vertices(my_dx_writer, // writer

value_accessor, // some accessor

"some_name"); // ignored

my_dx_writer(mesh, "my_mesh.out");

Note that the data name provided as third argument is ignored for the OpenDX writer.

ViennaGrid can write only one scalar quantity to an OpenDX file!

7.2.3 VMESH writer

The Vienna mesh file format is an XML-based meta-description format and does not store

the mesh itself. To date, the format has not been fully specified yet. A preliminary imple-

mentation is available as follows:

viennagrid::io::vmesh_writer<MeshType> my_vmesh_writer;

my_vmesh_writer(mesh, segmentation, "my_mesh.in", "my_mesh.out");

44



Here, mesh and segmentation denote the mesh and its segmentation as usual. my_mesh.in

is the physical mesh file where the mesh is stored, while my_mesh.out denotes the VMESH

file to which the meta-information should be written.

7.2.4 VTK

A number of free visualization tools such as Paraview [21] are available for the visualiza-

tion of VTK files. The simplest way of writing to a VTK file is

viennagrid::io::vtk_writer<MeshType, SegmentationType> my_vtk_writer;

my_vtk_writer(mesh, segmentation, "outfile");

Each segment is written to a separate file, leading to "outfile_0.vtu", "outfile_1.vtu",

etc. In addition, a Paraview data file "outfile_main.pvd" is written, which links all the

segments and should thus be used for visualization. However, if the segmentation consists

of zero or one segment, then only a single file output.vtu is written.

If no segmentation is given, the file "outfile.vtu" is written using the following code

example

viennagrid::io::vtk_writer<MeshType> my_vtk_writer;

my_vtk_writer(mesh, "outfile");

To write quantities stored on the mesh to the VTK file(s), the free functions from Tab. 7.1

are used. For example, to visualize a vector-valued cell-quantity of type std::vector<

double> stored in an accessor (cf. Chapter 5), the previous snippet is modified to

using viennagrid::io;

vtk_writer<MeshType> my_vtk_writer;

add_vector_data_on_vertices(my_vtk_writer, // writer

value_accessor, // some accessor

"vtk_name"); // VTK name

my_vtk_writer(mesh, "outfile");

In this way, the quantity is written to all segments and values at the interface coincide.

If discontinuities at the interfaces should be allowed, vertex or cell data may also be written

per segment.

As closing example, a quantity "jump" with type double is stored in an accessor. For a

vertex v at the interface of segments with indices 0 and 1, the values 1.0 for the segment

with index 1 and 2.0 for the segment with index 2 are stored:

std::vector<double> segment_0_values;

std::vector<double> segment_1_values;

viennagrid::result_of::field<std::vector<double>, VertexType>::type

segment_0_values_accessor(segment_0_values);

viennagrid::result_of::field<std::vector<double>, VertexType>::type

segment_1_values_accessor(segment_1_values);

segment_0_values_accessor(v) = 1.0;

segment_1_values_accessor(v) = 2.0;

The quantity is added to the VTK writer as

45



add_scalar_data_on_vertices(my_vtk_writer, segment_0, segment_0_values, "

segment_data");

add_scalar_data_on_vertices(my_vtk_writer, segment_1, segment_1_values, "

segment_data");

A tutorial code using a VTK writer for discontinuous data at segment boundaries

can be found in examples/tutorial/multi-segment.cpp.

46



Chapter 8

Library Internals

Details about the internals of ViennaGrid will be given in the following. They should aid

developers to extend the library with additional features and to understand the internal

data structures used. Nevertheless, the information provided might be of interest for new

users of ViennaGrid as well.

8.1 Recursive Inheritance

ViennaGrid extensively relies on recursive inheritance to build the individual element

types. The element are of type element<ElementTag, ConfigType>, where ElementTag is

a tag identifying the topological shape of the element and ConfigType is the configuration

class. The class element itself is almost empty, but inherits the information about its

boundary elements from a boundary_element_layer. In addition, the class inherits from

a class with the sole purpose of providing an ID mechanism

template <typename ElementTag,

typename ConfigType>

class element :

public viennagrid::storage::id_handler<...>,

public boundary_element_layer<ElementTag,

BoundaryElementContainerTypelist>,

{ ... }

The second template parameter of boundary_element_layer is a type list where all bound-

ary element types are stored. The boundary_element_layer inherits from a boundary_element_layer

with the last element type of that type list.

template<typename element_tag,

typename bnd_cell_container_type_,

typename orientation_container_type_,

typename tail>

class boundary_element_layer<

element_tag,

meta::typelist<

meta::static_pair<bnd_cell_container_type_,

orientation_container_type_>,

tail

>

> : public boundary_element_layer<element_tag, tail>

47



element_t

boundary_ncell_layer<n−2>

boundary_ncell_layer<n−1>

boundary_ncell_layer<0>

replacements
ID

Figure 8.1: Illustration of recursive inheritance for the element class element_t. The

boundary_element_layer class is abbreviated as bnd_layer. The widths of the boxes refer

to the sizes of a single class object.

where the additional technical template arguments customizing the behavior of each bound-

ary layer are omitted. The recursion is terminated at vertex level by a partial template

specialization of the class.

An illustration of the resulting class layout is given in Fig. 8.1. Since each layer is con-

figured by respective meta functions that return the specified user settings, the class size

of each layer varies depending on the storage of boundary cells and on the use of local

reference orientations.

A problem of recursive inheritance is name hiding. For example, a member function fun()

defined for one layer will be repeated in every layer and thus become inaccessible from the

outside. The resolve this issue, member function overloading of the form

void fun(boundary_element_tag) { }

for boundary element with tag boundary_element_tag is used. In this way, every layer is

accessible from the outside, which is used for the free functions such as elements<>().

Meshs and segments are set up in essentially the same way with a few internal storage

facilities adjusted. Instead of an ID handler, the segment inherits from a class providing a

reference to the underlying mesh.

8.2 Element Storage in Mesh and Segment

For storing the elements inside a mesh, the natural approach is to use a std::vector<> for

that purpose. However, a drawback of this data-structure is that the number of elements

should be known in advance in order to avoid costly reallocations. This is especially a

problem for mesh file formats which do not contain the total number of elements in an

explicit way. ViennaGrid uses a std::deque<> (double ended queue) as container for

vertices and cells, because it does not suffer form costly reallocations if the number of

elements is a-priori unknown.

For non-vertices and non-cells, unique representations of the respective elements are re-

quired. For example, the edge connecting vertices 1 and 2 must not lead to an edge [1, 2]
and an edge [2, 1] in the mesh. While such a distinction is simple for vertices, this is harder

to achieve for e.g. quadrilateral facets. In ViennaGrid, the global vertex IDs of each ele-

ment are used as a tuple for the identification of the respective element. Thus, the internal

storage inside the mesh for each non-vertices and non-cells is given by

48



std::map<TupleType, ElementType>

where TupleType refers to the tuple of sorted global vertex IDs, and ElementType is the

type of the element.

For segments, only handles to the global element objects in the mesh are stored. Since

uniqueness of elements is required in segments as well, an internal storage scheme of type

std::set<ElementHandleType> is chosen for non-cells, where ElementType denotes the

type of the elements.

Finally, it should be noted that future versions of ViennaGrid may provide additional

flexibility in customizing the internal storage scheme for mesh and segments. In partic-

ular, users may be interested in replacing the std::map<TupleType, ElementType> used

for non-vertices and non-cells with a std::vector<> after the setup phase for reasons of

memory consumption, faster (random) access and/or better caching possibilities.

49



Chapter 9

Design Decisions

In this chapter the various aspects that have lead to ViennaGrid in the present form are

documented. The discussion focuses on key design decisions mostly affecting usability and

convenience for the library user, rather than discussing programming details invisible to

the library user. Since the design decisions also reflect the history of ViennaGrid and the

individual preferences of the authors to a certain degree, a more vital language is chosen

in the following.

9.1 Iterators

Consider the iteration over all vertices of a mesh. Clearly, the choice

for (VertexIterator vit = mesh.begin(); vit != mesh.end(); ++vit) {}

is not sufficiently flexible in order to allow for an iteration over edges. Nevertheless, the

STL-like setup and retrieval of iterators is appealing.

A run-time dispatched iterator retrieval in the spirit of

for (VertexIterator vit = mesh.begin(ElementTag());

vit != mesh.end(ElementTag());

++vit) {}

will sacrifice efficiency especially for loops with a small number of iterations, which is

not an option for high-performance environments. Therefore, iterators should be accessed

using a compile time dispatch.

Since hard-coding function names is not an option for an parameterized traversal, the next

choice is to add a template parameter to the begin and end member functions:

for (VertexIterator vit = mesh.begin<ElementTag>();

vit != mesh.end<ElementTag>();

++vit) {}

This concept would be sufficiently flexible to allow for an iteration over edges, facets, etc. in

a unified way. In fact, this approach is also chosen by DUNE [2] and was also used in an

early prototype of ViennaGrid. However, there is one peculiarity with this approach when

it comes to template member functions: According to the C++ standard, the syntax needs

to be supplemented with an additional template keyword, resulting in

50



for (VertexIterator vit = mesh.template begin<ElementTag>();

vit != mesh.template end<ElementTag>();

++vit) {}

Apart from the fact that the template keyword for member functions is probably unknown

to a wide audience, weird compiler messages are issued if the keyword is forgotten. Since a

high usability is one of the design goals of ViennaGrid, we kept searching for better ways

with respect to our measures.

Having high-performance environments in mind, one must not forget about the advantage

of index-based for loops such as

for (std::size_t i=0; i<3; ++i) { ... }

for the iteration over e.g. the vertices of a triangle. The advantage here stems from the

fact that the compiler is able to unroll the loop, which is much harder with iterators. Con-

sequently, we looked out for a unified way of both iterator-based traversal as well as an

index-based traversal.

In order to stick with a simple iterator-based loop of the form

for (VertexIterator vit = something.begin();

vit != something.end();

++vit) {}

where something is some proxy-object for the vertices in the mesh, one finally ends up with

the current viennagrid::ncells<> approach. Writing the loop in the form

for (VertexIterator vit = elements<ElementTag>(mesh).begin();

vit != elements<ElementTag>(mesh).end();

++vit) {}

readily expresses the intention of iterating over 0-cells and does not suffer from the prob-

lems related to the template keyword. Thanks to the rich overloading rule-set for free

functions, an extension to elements<ElementTag>(segment) or elements<ElementTag>(

cell) is immediate. As presented in Chapter 4, the elements<>() approach also allows

for an index-based iteration in most cases.

In retrospective, the ranges returned by elements<>() would have come up with cobound-

ary iterators (which were added later), since one then has to pass the enclosing cell complex

anyway.

9.2 Default Behavior

A delicate question for a highly configurable library such as ViennaGrid is the question

of the default behavior. We decided to provide the full functionality by default, even if the

price to pay is a possibly slow execution at first instance.

Our decision is based on mostly psychological reasoning as follows: If ViennaGrid were

tuned for low memory consumption and high speed by default, then a substantial set of

functionality would be unavailable by default and causing compilation errors for users that

just want to try a particular feature of ViennaGrid. It is unlikely that these users will

continue to use ViennaGrid if they are not able to compile a simple application without

51



digging through the manual and searching for the correct configuration. On the contrary, if

the desired feature works essentially out of the box and is fast enough, users will not even

have to care about the further configuration of ViennaGrid. However, if additional speed

is required, there are plenty of configuration options available, each potentially leading to

higher speed or lower memory footprint and thus resulting in a feeling of success.

The bottom line of all this is that we consider it more enjoyable to tune a slower default con-

figuration for maximum speed than to fight with compiler error messages and being forced

to work through the manual. We hope that our decision indeed reflects the preferences of

our users.

9.3 Segments

Operating on a subset Ωi of a mesh Ω is a common demand. This could be well achieved

by what is known as a view, i.e. a selection of elements from a mesh. However, a view

typically possesses a considerably shorter lifetime compared to the mesh, thus it is hard

to store any data for the view itself. For this reason, segments in ViennaGrid are part

of the mesh, thus having a comparable lifetime in typical situations. In particular, meta

information can be stored on a segment during the mesh setup stage already.

52



Appendix A

Reference Orientations

The order of the vertices of a n-cell implicitly determines the boundary k-cells, thus it

is crucial to provide the vertices in the correct order. While one- and two-dimensional

objects provide little space for variations of reference orientations, the situation changes

in higher dimensions. The reference orientations of the boundary k-cells provides ample of

variations, while only a few choices satisfy requirements such as consistent cell normals.

The reference orientations in ViennaGrid are chosen such that the tuples of vertex IDs

for all boundary cells are in ascending order. This is accomplished in a generic way for a

unit-n-cell from the simplex and hypercube families in the n-dimensional space as follows:

1. Start with a 1-cell at the points (1, 0, . . .) and (0, 1, 0, . . .), enumerate the points and

set k = 2.

2. Prolongate the k− 1-cell to a k-cell in the k-dimensional subspace induced by the first

k unit vectors.

3. Enumerate the new vertices.

4. If k = n, stop. Otherwise, go back to 2.

The families of simplices and hypercubes differ in the way the the prolongation is carried

out. Details are given in the following subsections.

Boundary k-cells are ordered with respect to the less-than operator acting on the tuple of

vertices in ascending order. The first entry has precedence over the second entry, etc.

A.1 Simplices

The prolongation from a k − 1-simplex to a k-simplex is straightforward, since only one

vertex is added. Resulting reference orientations for a triangle and a tetrahedron are given

in Fig. A.1.

Boundary k-cell orientations are chosen such that the tuple of vertices is sorted in increas-

ing order. Note that this does not lead to a consistent orientation of n-cell normals. In

particular, the boundary k-cells of a triangle and a tetrahedron are thus ordered as follows:

53



x

y

00 1

3

x

z
y

2

2

1

Figure A.1: Reference orientations of a triangle (left) and a tetrahedron (right).

x

y

0

x

z
y

2
3

5

0

6
7

4

3
2

11

Figure A.2: Reference orientations of a quadrilateral (left) and a hexahedron (right).

Triangle Tetrahedron

1-cells [0, 1], [0, 2], [1, 2] [0, 1], [0, 2], [0, 3],

[1, 2], [1, 3], [2, 3]

2-cells [0, 1, 2] [0, 1, 2], [0, 1, 3],

[0, 2, 3], [1, 2, 3]

A.2 Hypercube

For the prolongation from a unit-k−1-hypercube to a unit-k-hypercube, the standard tensor

construction is used. This results in a second k − 1-hypercube shifted along the k-th unit

vector, with the new vertices enumerated in the same orientation as the initial k − 1-
hypercube. This procedure can also be seen in Fig. A.2, where the two 1-cells used for the

prolongation to the hexahedron are [0, 1, 2, 3] and [4, 5, 6, 7].

For reference, the edges and faces of a quadrilateral and a hexahedron are ordered as

follows:

Quadrilateral Hexahedron

1-cells [0, 1], [0, 2], [1, 3], [2, 3] [0, 1], [0, 2], [0, 4], [1, 3], [1, 5], [2, 3],

[2, 6], [3, 7], [4, 5], [4, 6], [5, 7], [6, 7]

2-cells [0, 1, 2, 3] [0, 1, 2, 3], [0, 1, 4, 5], [0, 2, 4, 6],

[1, 3, 5, 7], [2, 3, 6, 7], [4, 5, 6, 7]

Mind that the the reference orientations of a ViennaGrid quadrilateral and a

ViennaGrid hexahedron coincide with those of the VTK types VTK_PIXEL and

VTK_VOXEL, but differ from the orientations of the VTK types VTK_QUAD and

VTK_HEXAHEDRON.

54



Appendix B

Versioning

Each release of ViennaGrid carries a three-fold version number, given by

ViennaGrid X.Y.Z .

For users migrating from an older release of ViennaGrid to a newer one, the following

guidelines apply:

• X is the major version number, starting with 1. A change in the major version num-

ber is not necessarily API-compatible with any versions of ViennaGrid carrying a

different major version number. In particular, end users of ViennaGrid have to ex-

pect considerable code changes when changing between different major versions of

ViennaGrid.

• Y denotes theminor version number, restarting with zero whenever the major version

number changes. The minor version number is incremented whenever significant

functionality is added to ViennaGrid. The API of an older release of ViennaGrid

with smaller minor version number (but same major version number) is essentially

compatible to the new version, hence end users of ViennaGrid usually do not have

to alter their application code. There may be small adjustments in the public API,

which will be extensively documented in the change logs and require at most very

little changes in the application code.

• Z is the revision number. If either the major or the minor version number changes, the

revision number is reset to zero. The public APIs of releases of ViennaGrid, which

only differ in their revision number, are compatible. Typically, the revision number

is increased whenever bugfixes are applied, performance and/or memory footprint is

improved, or some extra, not overly significant functionality is added.

Always try to use the latest version of ViennaGrid before submitting bug reports!

55



Appendix C

Change Log

Version 2.1.0

In addition to the usual internal improvements, this minor version updates brings a couple

of new features and a change of one header file location:

• scale(): Moved from file viennagrid/algorithm/scale.hpp to viennagrid/algorithm

/geometric_transform.hpp.

• Refinement: Added support for specifying the location of the new vertex for each edge

to be refined.

• Refinement: Added optional vertex copy map, which returns the new vertex in the

refined mesh given a vertex from the original mesh.

• Refinement: Added refinement towards a hyperplane, so that no element of the re-

fined mesh is intersected by the hyperplane.

• Added thin mesh configurations, where only the cells and the vertices are stored.

This leads to a much lower memory footprint provided that edges, facets, etc. are not

needed.

• Added segmented_mesh class, which encapsulates one mesh and an associated seg-

mentation.

• Added support for named segments. Rather than only providing a numeric ID, seg-

ments can be identified by a string.

• Removed plc_2d_* typedefs since they might cause confusion. Introduced boundary

representation typedefs brep_*d_* instead.

• IO: Added reader for .bnd files, which are created by Synopsys tools.

• IO: Added reader for .tess files (produced by Neper polycrystal generation and mesh-

ing library).

• IO: Added writer for .mphtxt files (consumed by COMSOL).

• IO: Added preliminary writer for .vmesh legacy files.

• IO: VTK writer now writes only one .vtu file if the segmentation is empty or only one

segment is present.

56



• Added convenience routine for copying elements based on an element iterator range

or element handle iterator range.

• Algorithms: Added boundary/hull extraction.

• Algorithms: Generalized geometric transformations (scale, affine transform).

• Algorithms: Added bounding box computation, normal vector computation, and de-

terminant of points/vectors.

• Algorithms: Added inclusion tests for points inside triangles or tetrahedra.

• Algorithms: Added distance between segment boundary and line.

• Bugfix: Fixed logic error in computation of Voronoi quantities.

• Bugfix: Compilation error for closest_point() for boundary distance.

• Bugfix: Element handles were not resolved correctly when elements were deleted

from a mesh.

Version 2.0.0

The ViennaGrid internals have been completely redesigned for higher flexibility. Some

rather significant adjustments to the user API were necessary.

• Renamed the old domain_t to mesh in order to avoid ambiguities with the mathemat-

ical problem domain.

• Replaced viennagrid::ncells<>()with viennagrid::elements<>() to obtain range

objects.

• As a consequence of moving away from ncells<>, now element tags are used instead

of the topologic dimension to select elements.

• Added support for two dynamic element types: polygon and PLCs.

• Added support for neighbor iteration. This way one no longer needs to code the bound-

ary/coboundary iterations by hand.

• Added support for multiple segmentations. This is a generalization of the old segment

concept, where elements could be part of at most one segment.

• New algorithms: angles, intersection, scaling, seed point segmenting.

• Accessors are now consistently used for accessing quantities rather than ViennaData.

This makes the implementation more generic and provides better support for user

storage.

• New storage layer, re-wrote most of the internals.

57



Version 1.0.1

This is a maintenance release, mostly fixing minor compilation problems on some compilers

and operating systems. Other notable changes:

• Added distance() function for computing the distance between points, cell, etc.

• Voronoi quantities can now also be accessed in a more fine-grained manner: Volume

and contributions for each cell attached to a vertex or edge.

• Added quantity transfer: Interpolates quantities on a m-cells can be transferred to

n-cells. Both m < n and n > m are supported.

Version 1.0.0

First release

58



Appendix D

License

Copyright (c) 2011-2014, Institute for Microelectronics and Institute for Analysis and Sci-

entific Computing, TU Wien

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-

ware and associated documentation files (the ”Software”), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish, dis-

tribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-

PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FORA PARTICULAR PURPOSEANDNONINFRINGE-

MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE

FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

59



Bibliography

[1] “CGAL - Computational Geometry Algorithms Library.” [Online]. Available:

http://www.cgal.org/

[2] “DUNE - Distributed and Unified Numerics Environment.” [Online]. Available:

http://www.dune-project.org/

[3] “GrAL - Grid Algorithms Library.” [Online]. Available: http://gral.berlios.de/

[4] “libmesh.” [Online]. Available: http://libmesh.sourceforge.net/

[5] “OpenMesh.” [Online]. Available: http://www.openmesh.org/

[6] “trimesh2.” [Online]. Available: http://gfx.cs.princeton.edu/proj/trimesh2/

[7] “VCGlib.” [Online]. Available: http://vcg.sourceforge.net/

[8] “CMake.” [Online]. Available: http://www.cmake.org/

[9] “Xcode Developer Tools.” [Online]. Available:

http://developer.apple.com/technologies/tools/xcode.html

[10] “Fink.” [Online]. Available: http://www.finkproject.org/

[11] “DarwinPorts.” [Online]. Available: http://darwinports.com/

[12] “MacPorts.” [Online]. Available: http://www.macports.org/

[13] “Boost C++ Libraries.” [Online]. Available: http://www.boost.org/

[14] “OpenMP.” [Online]. Available: http://openmp.org

[15] “ViennaData.” [Online]. Available: http://viennadata.sourceforge.net/

[16] “VTK - Visualization Toolkit.” [Online]. Available: http://www.vtk.org/

[17] “VTK File Formats.” [Online]. Available: http://www.vtk.org/VTK/img/file-formats.pdf

[18] “Neper Polycrystal Generation and Meshing.” [Online]. Available:

http://neper.sourceforge.net/

[19] “Netgen Mesh Generator.” [Online]. Available:

http://sourceforge.net/projects/netgen-mesher/

[20] “TetGen.” [Online]. Available: http://tetgen.berlios.de/

[21] “Paraview - Open Source Scientific Visualization.” [Online]. Available:

http://www.paraview.org/

[22] “OpenDX.” [Online]. Available: http://www.opendx.org/

60

http://www.cgal.org/
http://www.dune-project.org/
http://gral.berlios.de/
http://libmesh.sourceforge.net/
http://www.openmesh.org/
http://gfx.cs.princeton.edu/proj/trimesh2/
http://vcg.sourceforge.net/
http://www.cmake.org/
http://developer.apple.com/technologies/tools/xcode.html
http://www.finkproject.org/
http://darwinports.com/
http://www.macports.org/
http://www.boost.org/
http://openmp.org
http://viennadata.sourceforge.net/
http://www.vtk.org/
http://www.vtk.org/VTK/img/file-formats.pdf
http://neper.sourceforge.net/
http://sourceforge.net/projects/netgen-mesher/
http://tetgen.berlios.de/
http://www.paraview.org/
http://www.opendx.org/

	Introduction
	Installation
	Dependencies
	Generic Installation of ViennaGrid
	Building the Examples and Tutorials

	Main Entities
	Points (Geometrical Objects)
	Elements (Topological Objects)
	Mesh
	Segmentation and Segment

	Mesh and Segment Setup
	Adding Vertices to a Mesh or Segment
	Adding Cells to a Mesh or Segment

	Iterators
	Elements in a Mesh or Segment
	Boundary Elements Iteration
	Coboundary Element Iteration
	Neighbor Element Iteration

	Data Storage and Retrieval
	Algorithms
	Point/Vector-Based
	Element-Based
	Mesh/Segment-Based

	Input/Output
	Readers
	Writers

	Library Internals
	Recursive Inheritance
	Element Storage in Mesh and Segment

	Design Decisions
	Iterators
	Default Behavior
	Segments

	Reference Orientations
	Simplices
	Hypercube

	Versioning
	Change Log
	License
	Bibliography

